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Plan for Today

• Plain (vanilla) Recurrent Neural Networks
• Problem of vanishing gradients
• Long Short-Term Memory
• Gradient Recurrent Unit
• Example applications
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Motivation

• We want to process a sequence of data like text, digitized speech, 
video frames, etc.

• Want past samples to influence output from current sample

• Examples???
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Recurrent Neural Network

Understanding LSTM Networks, C. Colah Blog Post

Input at time/step t

Neural
Network
Layers

Output Activation
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Hidden state at time/step t-1

ht-1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Network – Weight Matrices
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S&LP, Jurafsky & Martin



Unrolled view over time

Understanding LSTM Networks, C. Colah Blog Post

RNN

Delay 
Memory

D D D

Unrolled RNN
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In this case you are emitting an output for every input token

Unrolled network is fed sequentially (not all at once)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Unrolled Network
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The weights, U, W and 
V, are the same at 
each time step. Only 
the inputs (xt, ht-1) 
change.

S&LP, Jurafsky & Martin



Recurrent Neural Networks for
Unbounded Input Lengths
• What gradient problems will these trigger?



Different RNN configurations
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Output

State

Inputs

(a) (b) (c
)

(d) (e)

(a) Regular Feed Forward Network
(b) E.g. image captioning – input 1 image, outputs sequence of words
(c) E.g. sentiment analysis from string of words or characters
(d) E.g. machine translation such as English to French 
(e) Synced sequence input and output, e.g. video frame-by-frame action classification or 

text generation

Transforms



RNN next letter prediction example
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Output is probability or likelihood over 
the vocabulary

One-hot encoded input of vocabulary 
length, e.g. (‘h’, ‘e’, ‘l’, ‘o’) 

Hidden layer encodes history, here e.g. 
length 3.



Training an RNN
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import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html 

Simple feed forward network.

History and recurrence 
managed outside the model

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


Training an RNN – Same Backprop as FFN
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# If you set this too high, it might explode. If too low, it might not learn
learning_rate = 0.005

def train(category_tensor, line_tensor):
    hidden = rnn.initHidden()

    rnn.zero_grad()

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    loss = criterion(output, category_tensor)
    loss.backward()

    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add_(p.grad.data, alpha=-learning_rate) # in-place addition

    return output, loss.item()

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html 

Managing recurrence. 

Single output for classification 
in this case.

“Back propagation Through Time”, e.g. BPTT

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


Loss Calculation for Sequence
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The probability that the model 
assigns to the next word in the 
training sequence.

S&LP, Jurafsky & Martin



Any Questions?

???
Moving on
• Plain (vanilla) Recurrent Neural 

Networks
• Problem of vanishing gradients
• Long Short-Term Memory
• Gradient Recurrent Unit
• Example applications
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Problem of vanishing gradients

Understanding LSTM Networks, C. Colah Blog Post

Tokens from earlier in the sequence can 
influence the current output

But for plain RNNs, the influence can 
reduce rapidly the further the sequence 
difference
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Why not exploding gradients?

Understanding LSTM Networks, C. Colah Blog Post

Tokens from earlier in the sequence can 
influence the current output

But for plain RNNs, the influence can 
reduce rapidly the further the sequence 
difference

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Any Questions?

???
Moving on
• Plain (vanilla) Recurrent Neural 

Networks
• Problem of vanishing gradients
• Long Short-Term Memory
• Gradient Recurrent Unit
• Example applications
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Redrawing RNN

Understanding LSTM Networks, C. Colah Blog Post

Redraw the RNN in slightly more 
detail
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/


First redraw RNN
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Long Short Term Memory (LSTM)
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LSTM – Cell State
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LSTM -- Forgetting Gate
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Decides what part of cell state to suppress



LSTM – Cell state update
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Input Gate Layer

Candidate Cell State



LSTM – Apply changes to cell state
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LSTM – Output and Hidden State Update
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Output Gate

Next hidden state and output



Long Short Term Memory (LSTM)

Understanding LSTM Networks, C. Colah Blog Post
Illustrated Guide to LSTM’s and GRU’s, M. Phi Blog Post

“forget gate”

“input gate” and 
new cell state

new 
output

“output 
gate”

C

t

Ct-

1
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21


Any Questions?

???
Moving on
• Plain (vanilla) Recurrent Neural 

Networks
• Problem of vanishing gradients
• Long Short-Term Memory
• Gradient Recurrent Unit
• Example applications
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Gradient Recurrent Unit
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• Combines the forget and input gates into a single “update gate.”
• Merges the cell state and hidden state
The resulting model is simpler than standard LSTM models.
Results are mixed.

K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for 
Statistical Machine Translation.” arXiv, Sep. 02, 2014. doi: 10.48550/arXiv.1406.1078.

https://doi.org/10.48550/arXiv.1406.1078


Any Questions?

???
Moving on
• Plain (vanilla) Recurrent Neural 

Networks
• Problem of vanishing gradients
• Long Short-Term Memory
• Gradient Recurrent Unit
• Example applications
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Example walk-through

• https://pytorch.org/tutorials/intermediate/char_rnn_classification
_tutorial.html
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Trained on complete works of Shakespeare

3-layer RNN with 512 hidden nodes on each 
layer. 

Trained for a few hours on a GPU
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Trained and 
Generated 

Wikipedia Content

Structured Markdown

Valid XML
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Any Questions?

??? • Plain (vanilla) Recurrent Neural 
Networks

• Problem of vanishing gradients
• Long Short-Term Memory
• Gradient Recurrent Unit
• Example applications
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Attention Preview

• Very deep networks have troubles managing gradients.
• Recurrent networks with long inputs are deep.
• How do we access data from the distant past?
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…
…



2000
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